Show simple item record

dc.contributor.authorA. Chafik
dc.contributor.authorK. Berrada
dc.contributor.authorEleuch, Hichem
dc.contributor.authorM. Abdel-Aty
dc.date.accessioned2018-03-27T05:56:20Z
dc.date.available2018-03-27T05:56:20Z
dc.date.issued2014-10-10
dc.identifier.issn1546-1963 (Online)
dc.identifier.issn1546-1955 (Print)
dc.identifier.urihttps://dspace.adu.ac.ae/handle/1/843
dc.descriptionChafik, A., Berrada, K., Eleuch, H., & Abdel-Aty, M. (2014). M-Flip Concurrence in the Framework of Multipartite Spin Coherent States. Journal of Computational and Theoretical Nanoscience, 11(10), 2091-2096.en_US
dc.description.abstractIn this paper, we propose a useful practical way to investigate and control the amount of entanglement in multipartite systems using the spin coherent states (SCSs). Using the M-Flip concurrence as a measure of entanglement, we derive the amount of entanglement and examine its properties in terms of different parameters involved in the SCSs and giving conditions under which tripartite entangled states become sparable and maximally entangled states. It is shown that these entangled SCSs provide a good candidate and richer structure for understanding the entanglement distribution in GHZ states. Finally, a useful relationship of the entanglements between multipartite systems containing different number of qubits is given in terms of bipartite entanglement in this representation of entangled multipartite SCSs. Our result may open new perspectives in different tasks of quantum information processing.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Scientific Publishersen_US
dc.subjectTripartite Entanglementen_US
dc.subjectFlip Concurrenceen_US
dc.subjectCoherent Statesen_US
dc.subjectMaximalen_US
dc.titleM-Flip Concurrence in the Framework of Multipartite Spin Coherent Statesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1166/jctn.2014.3610


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record