• Login
    View Item 
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Civil Engineering
    • View Item
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Civil Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    State of the art, reconstruction of damaged zones: transitory stresses effect and factors controlling rock mass stability

    Thumbnail
    Date
    2018
    Type
    Article
    Author
    Alzo'ubi, Abdel Kareem
    Metadata
    Show full item record
    Abstract
    For the last three decades, many countries in the Middle East have been bombarded by wars. In these damaged zones, removing of destruction debris and the effect of the direct impact of blasts might trigger rock mass instabilities. This paper discusses the influence of explosives on factors controlling stability of rock masses and shows the available methods to back-analyze, investigate, and/or design near-surface rocks. Explosion waves and the resulted debris may jeopardize the geomaterial stability through different factors such as; introducing new fractures inside rocks and/or soils, temporary increasing water pressure, and dynamic loading-unloading cycles. Upon unloading as a result of removing destruction debris, the stress changes and consequently destabilize soil/rock masses. These effects become of great concern in many civil engineering projects such as, road cuts, foundations, and retaining walls. Rock slopes susceptible to instability could be divided into two categories; the structurally controlled slopes, and the complex rock slopes. One mechanism, to form a continuous rupture surface in complex slopes, is by introducing new fractures through explosions and/or high rate of loading and/or unloading as transitory stresses. The modes of instabilities that have been documented are summarized to introduce the factors affecting the geomaterial slope movement in damaged zones. Hybrid modeling approaches might be the best choice to examine a rock mass vulnerability to movement by simulating the explosive stresses. Modeling the entire reconstruction process and the effect of explosions would help to reduce or to eliminate risks in the construction of new structures in after war region.
    URI
    https://dspace.adu.ac.ae/handle/1/4049
    DOI
    https://doi.org/10.21660/2018.41.73215
    Citation
    Alzo’ubi, A. K. (2018). State of the art, reconstruction of damaged zones: transitory stresses effect and factors controlling rock mass stability. GEOMATE Journal, 14(41), 35-43.
    Collections
    • Civil Engineering

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV