• Login
    View Item 
    •   DSpace Home
    • ADU Repository
    • Science
    • Environmental Science
    • View Item
    •   DSpace Home
    • ADU Repository
    • Science
    • Environmental Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding wetting phenomena in membrane distillation and how operational parameters can affect it

    Thumbnail
    Date
    2016-10
    Type
    Article
    Author
    Burrieza, E Guillen
    Mavukkandy, Musthafa O
    Bilad, MR
    Arafat, HA
    Metadata
    Show full item record
    Abstract
    Direct contact membrane distillation experiments were carried out under this work to study the influence of operational variables on membrane wetting. In the first part of this work, experiments were designed according to a Box-Behnken methodology and results were analyzed statistically using Pearson correlation coefficients, principal component/factor analysis and cluster analysis. The independent operational parameters were the temperatures of both the hot and cold streams (Tf, Tc) and their flow rates (Ff, Fc). The analyzed responses were the time and rate of wetting along with distillate flux. Statistical analysis showed strong evidence of a relationship between the selected variables and the wetting patterns. In general, parameters enhancing flux production led to suppression of wetting (both delayed wetting and reduced wetting rate). The second part of the work focused on reversing the wetting with minimal operation disruption by varying the operational parameters. The data generated helped in understanding the salt passage and wetting mechanisms. The wetting hypothesis developed herein is based on water bridging as a consequence of the weak hydrophobicity of the PVDF membrane and a net absolute transmembrane pressure. Data were analyzed through the Peclet number, the Poiseuille flow and a mass balance in order to understand the interplay between diffusion and convection/advection. High transmembrane temperature (ΔT) (ΔT=Tf−Tc) counteracts the build-up of a net absolute transmembrane pressure and reduces the viscous liquid flux. In this case, the diffusion of salt through the stagnant water layer in the membrane pores (a much slower mechanism) becomes more important and the wetting rate can be reduced and further reversed.
    URI
    https://dspace.adu.ac.ae/handle/1/3823
    DOI
    https://doi.org/10.1016/j.memsci.2016.05.051
    Citation
    Guillen-Burrieza, E., Mavukkandy, M. O., Bilad, M. R., & Arafat, H. A. (2016). Understanding wetting phenomena in membrane distillation and how operational parameters can affect it. Journal of Membrane Science, 515, 163-174.
    Collections
    • Environmental Science

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV