• Login
    View Item 
    •   DSpace Home
    • ADU Repository
    • Science
    • Environmental Science
    • View Item
    •   DSpace Home
    • ADU Repository
    • Science
    • Environmental Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2—the impact of lignin on the kinetics of cellulose acetylation

    Thumbnail
    Date
    2017-10
    Type
    Article
    Author
    Abushammala, Hatem
    Hettegger, Hubert
    Bacher, Markus
    ETAL..
    Metadata
    Show full item record
    Abstract
    Cellulose acetylation has been reported as a side reaction of cellulose treatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) (Karatzos et al. in Cellulose 19:307–312, 2012) and other 1,3-dialkylimidazolium acetate ionic liquids. 1-Acetylimidazole (AcIm), an [EMIm][OAc] impurity, has been found to be the actual acetylating agent (Zweckmair et al. in Cellulose 22:3583–3596, 2015), and the degree of acetylation was relatively low, below a DS of approx. 0.1%. Higher degrees of cellulose acetylation (DS > 10%) have been observed when the entire wood was mixed with [EMIm][OAc] instead of cellulosic pulp only (Abushammala et al. in Carbohydr Polym 134:609–616, 2015). In this paper, we explore the impact of wood constituents, mainly lignin, on cellulose acetylation using AcIm. The results demonstrate that lignin itself can be readily acetylated upon mixing with AcIm, and—noteworthy—that lignin presence significantly accelerates cellulose acetylation. The initial rate of cellulose acetylation by AcIm increased from 1.8 to 4.7%/h when only 1% of lignin, based on cellulose mass, was added. A mechanistic study employing cellulose and lignin model compounds showed lignin to be more susceptible to acetylation than cellulose and to act as an intermediate acetyl group source for further cellulose acetylation in a catalytic scenario.
    URI
    https://dspace.adu.ac.ae/handle/1/3330
    DOI
    https://doi.org/10.1007/s10570-017-1322-x
    Citation
    Abushammala, H., Hettegger, H., Bacher, M. et al. On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2—the impact of lignin on the kinetics of cellulose acetylation. Cellulose 24, 2767–2774 (2017).
    Collections
    • Environmental Science

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV