Show simple item record

dc.contributor.authorEleuch, Hichem
dc.contributor.authorHilke, Michael
dc.date.accessioned2019-03-14T07:21:54Z
dc.date.available2019-03-14T07:21:54Z
dc.date.issued2018
dc.identifier.citationhttps://www.sciencedirect.com/science/article/pii/S2211379718320084en_US
dc.identifier.urihttps://dspace.adu.ac.ae/handle/1/1703
dc.descriptionEleuch, H., & Hilke, M. (2018). ERS approximation for solving Schrödinger’s equation and applications. Results in Physics, 11, 1044-1047.en_US
dc.description.abstractA new technique was recently developed to approximate the solution of the Schrödinger equation. This approximation (dubbed ERS) is shown to yield a better accuracy than the WKB-approximation. Here, we review the ERS approximation and its application to one and three-dimensional systems. In particular, we treat bound state solutions. We further focus on random potentials in a quantum wire and discuss the solution in the context of Anderson localization.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectERS Approximationen_US
dc.subjectSchrödinger solutionen_US
dc.subjectRandom mediaen_US
dc.titleERS approximation for solving Schrödinger’s equation and applicationsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.rinp.2018.11.004


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record