• Login
    View Item 
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Mechanical Engineering
    • View Item
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Mechanical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force

    Thumbnail
    Date
    2015-05
    Type
    Article
    Author
    Shaat, M.
    Abdelkefi, A.
    Metadata
    Show full item record
    Abstract
    The effects of the material structure on the pull-in instability of nano-actuated beams made of nanocrystalline silicon (Nc–Si) and subjected to a distributed electrostatic force are investigated. Nc–Si is represented as a multi-phase material composed of nano-sized grains, nano voids, and an amorphous-like interface to consider the effects of the interface, grain size, porosity, and the inhomogeneities surface energies on the elastic properties of the composite material. To this end, a size-dependent micromechanical model is developed for multi-phase materials considering the inhomogeneities surface energy effects. An atomic lattice model is also proposed to estimate the elastic modulus of the interface of NcMs. Due to the intensive decrease in the beam’s size, the effects of the grain rotations on the beam strain energy and hence on its rigidity are captured and represented using the modified couple stress theory. Considering all these effects and using Euler–Bernoulli beam theory, the governing equation is derived. A finite difference-based solution is used to determine the pull-in voltage of the actuated beams. A parametric study is then performed to reveal the effects of the porosity, interface, surface energy, and grain rotations on the pull-in instability behavior of actuated nano-beams.
    URI
    https://dspace.adu.ac.ae/handle/1/1653
    DOI
    http://dx.doi.org/10.1016/j.ijengsci.2015.02.002
    Collections
    • Mechanical Engineering

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV