• Login
    View Item 
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Mechanical Engineering
    • View Item
    •   DSpace Home
    • ADU Repository
    • Engineering
    • Mechanical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs

    Thumbnail
    Date
    2016
    Type
    Article
    Author
    Shaat, Mohamed
    Abdelkefi, Abdessattar
    Metadata
    Show full item record
    Abstract
    The modeling and performance of mechanical resonators used for mass detection of bio-cells, nanocrystalline materials characterization, and disease diagnosis of human immune-viruses (HIVs) are investigated. To simulate the real behavior of these mechanical resonators, a novel distributed-parameter model based on Euler–Bernoulli beam theory is developed. This model is equipped with a micromechanical model and an atomic lattice model to capture the inhomogeneity nature of the material microstructure. Compared with lumped-parameter model predictions, the results show that this developed model best fits with the real behavior of the mechanical resonators when detecting the mass of vaccinia virus. In terms of material characterization, the developed model gives very good estimations for the densities and Young’s moduli of the grain boundary of both the nanocrystalline silicon and nanocrystalline diamond. For disease diagnosis, it is shown that the number of human immune-deficiency virus particles in a liquid sample can be easily detected when using the proposed model. The results also show that the developed model is beneficial and can be used to design mechanical resonators made of nanocrystalline materials with the ability to control the resonators’ sizes and the material structure.
    URI
    https://dspace.adu.ac.ae/handle/1/1648
    DOI
    https://link.springer.com/article/10.1007/s00542-015-2421-y
    Collections
    • Mechanical Engineering

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV